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The Galerkin-Kantorovich method is used to obtain an approximate
solution of the nonstationary problem of heat conduction for a thin
conical rod,

In 2 number of branches of technology (motor-build-
ing, aviation, ete,) finned surfaces are often used to
promote cooling efficiency. Conical fins are most
commonly employed. Considerable interest attaches
to problems of the heating of thin fins. In designing
finned surfaces it is first necessary to determine the
temperature distribution over the fin. In a number of
studies [1~3] the solution of the stationary problem of
the heating of a thin conical rod is given in terms of
Bessel functions, It is also important to obtain a solu-
tion of the nonstationary problem,

We will consider the heating of a thin rod, i.e,, an
element with high thermal conductivity whose trans-
verse dimensions are small compared with its length,
Then we can neglect transverse temperature gradients
and consider the one-dimensional formulation of the
problem, We can estimate the error due to the assum-
ption of one-dimensionality, for example, from the
solution of the one~-dimensional problem of heat conduc-
tion for an infinite plate [4], considering the heat con-
duction over the thickness of the rod under the least
favorable heating conditions,

Mathematically the problem is formulated as follows
(Fig. 1):
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We note that in the case of a conical noncircular rod
the mathematical formulation of the problem remains

the same (correct to the constant coefficients in Eq. (1)).

In the limit as 8 — 0 (h and r remain constant) Eq.
(1) goes over into the heat conduction equation for a

cylindrical rod
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The solution of the problem (1)—(3) will be found in
the form
t(x, ©) =ty (0) + ulx, 7). (5)

The stationary solution tgi(x) is found from (1) with
boundary conditions (2), Then u(x, 1) is determined
from the problem
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To determine t (x) we employ the Galerkin method
[5], using as coordinate function the known stationary
solution of problems (4) and (2), which has the form
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For the stationary case in the new variable v(x) obtain-
ed from tgi(x) by means of the relation tgi(x) tm1 - v(x),
Eq. (1) is written as follows:
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We will find v(x) in the form

v(x) = Alfm,—t,c (O
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Fig, 1. Conical rod,
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where the constant A is found from the Galerkin equat-
ion
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The stationary solution in dimensionless form is
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Figure 2 presents curves of the distribution of
stationary temperatures along the rod calculated from
the formulas we have obtained (approximate solution)
and by the method of pivotal condensation (exact solu-
tion). The agreement of the results is good. The re-
sults of calculations based on a series of other values
of the parameters also indicate that using only the
first approximation of the Galerkin method ensures
good accutracy,

We will seek the approximate solution of problem
(6)—(8) in accordance with the Galerkin-Kantorovich
method [5] in the form
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where 1, is found from the equation tg By = El_‘_, @ (7)
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are determined from the system of Galerkin equations
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Hence we obtain
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a prime on the summation sign indicating that the term
k =m is not included in the summation,
It is easy to see that ¢, >0, d,,>0 and 4, > p? .
Thus, the problem of determining u(x, 7) reduces
to solving system (13) for ¢,,. The integration of this
system leads to algebraic operations and in the general
eral case can be successfully performed on electronic
computers, A desk calculator can be used for calcula-
ting first approximations,
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In the limit when the conical rod becomes cylindric-
al, system (13) breaks down and is written in the fol-
lowing simple form:
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The roots of the characteristic equation of system
(13) are negative or have negative real parts, which
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Fig, 2. Distribution of stat-

ionary temperature @g¢ along

length of rod (t(x, 0) = tm;

Bi; =1;Bi=0.2; 3= 0.05;

H = 4): a) approximate so-
lution; b) exact solution.
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corresponds to the physical significance of the heat
conduction problem considered, For first approxima-
tions this result is easily obtained in general form if
the Routh-Hurwitz criterion is employed,

To determine ¢, (0) we substitute (12) into (8),
multiply both sides of the equation obtained by cos up,
+ (1 — x/h) and integrate from 0 to h. We then obtain
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If f(x) =tm, it follows that
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The final form of the solution of our problem is then
0" = Oy (1) — Ycosp (1— %) @u(F).  (15)
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In the limiting case of a cylindrical rod and with
f (%) =ty we obtain the known formula [4].

Figure 3 presents curves of o) a5 a function of the
number Fj for our example of the heating of a rod, The
behavior of the curves indicates that the convergence
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Fig, 3. Temperature o) as a function of the number
Fy(t(x, 0) = tm; Bi; = 1; Bi = 0.2; 8= 0.05; H = 4): sol-
id line—for ®(1), broken 1;ne—®(z), dot-dash line—
®(3); 1,2,3)atx=0.2, 0.1, and 0, respectively.
of the successive approximations is good and that it s p_jopme o, —@F )24 F 22w _ L S e 2,
perfectly sufficient to confine oneself to the first three, Zem 2 tm
We also used the above method to solve the problem ( ot g ST pm 2Bi (1 | Sin 2um ) by = 47 '(1
of the heating of a conical rod when a conductive heat " P ) " sinf T opm /0T 2l
. . - dm .
flow is supplied th?ough the sma%ler base of the cone, _ cosp ) | G = z—i.——dimensionless and cri-
the larger base being thermally insulated. The method OS Py €m em

can also be employed to calculate the heating of a rod
under other types of boundary conditions,

NOTATION

t—temperature in rod; x—coordinate; T—time;
A—heat conductivity; c—specific heat; y—specific
weight; ¢ —thermal diffusivity; H—height of complete
cone; ty and ¢—temperature of medium and heat trans-
fer coefficient at lateral surface; ty,; and o;—the same
quantities at the larger base of the cone; 8—cone half
angle; h—height of truncated cone; r—radius of larger
base; tgt—stationary temperature in rod; t . _pon-
stationary temperature in n~th approximation; Bi =a#/,
Bi =a bk, H=Hh, x=hy 2kr, x=x/h, 7=1/h; 8g=(m, —

—tst)/ (b, — tm), O = (tm_ — t™)tm, —tm), Pm= 9m/(fm, —tm),

terial quantities.
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